
Software Studies

A Lexicon

edited by Matthew Fuller

The MIT Press
Cambridge, Massachusetts

London, England

© 2008 Matthew Fuller

Individual texts © copyright of the authors, 2006

All rights reserved. No part of this book may be reproduced in any form by any elec-

tronic or mechanical means (including photocopying, recording, or information stor-

age and retrieval) without permission in writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress

.mit.edu

This book was set in Garamond 3 and Bell Gothic by Graphic Composition, Inc.

Printed and bound in the United States of America.

Library of Congress Cataloging- in- Publication Data

Software studies : a lexicon / edited by Matthew Fuller.

 p. cm.—(Leonardo books)

 Includes bibliographical references and index.

 ISBN 978- 0- 262- 06274- 9 (hbk. : alk. paper) 1. Computer software. 2. Comput-

ers and civilization—Encyclopedias. 3. Programming languages (Electronic comput-

ers)—Lexicography. 4. Technology and the arts. I. Fuller, Matthew.

QA76.754.S64723 2008

005.1—dc22

2007039724

10 9 8 7 6 5 4 3 2 1

series foreword ix
acknowledgments xi

introduction
Matthew Fuller 1

algorithm
Andrew Goffey 15

analog
Derek Robinson 21

button
Søren Pold 31

class library
Graham Harwood 37

code
Friedrich Kittler 40

codecs
Adrian Mackenzie 48

computing power
Ron Eglash 55

concurrent versions system
Simon Yuill 64

Contents

series foreword ix
acknowledgments xi

introduction
Matthew Fuller 1

algorithm
Andrew Goffey 15

analog
Derek Robinson 21

button
Søren Pold 31

class library
Graham Harwood 37

code
Friedrich Kittler 40

codecs
Adrian Mackenzie 48

computing power
Ron Eglash 55

concurrent versions system
Simon Yuill 64

Contents

vi

copy
Jussi Parikka 70

data visualization
Richard Wright 78

elegance
Matthew Fuller 87

ethnocomputing
Matti Tedre and Ron Eglash 92

function
Derek Robinson 101

glitch
Olga Goriunova and Alexei Shulgin 110

import / export
Lev Manovich 119

information
Ted Byfi eld 125

intelligence
Andrew Goffey 132

interaction
Michael Murtaugh 143

interface
Florian Cramer and Matthew Fuller 149

internationalization
Adrian Mackenzie 153

interrupt
Simon Yuill 161

language
Florian Cramer 168

lists
Alison Adam 174

loop
Wilfried Hou Je Bek 179

memory
Warren Sack 184

Contents

vii

obfuscated code
Nick Montfort 193

object orientation
Cecile Crutzen and Erna Kotkamp 200

perl
Geoff Cox and Adrian Ward 207

pixel
Graham Harwood 213

preferences
Søren Pold 218

programmability
Wendy Hui Kyong Chun 224

sonic algorithm
Steve Goodman 229

source code
Joasia Krysa and Grzesiek Sedek 236

system event sounds
Morten Breinbjerg 243

text virus
Marco Deseriis 250

timeline (sonic)
Steve Goodman 256

variable
Derek Robinson 260

weird languages
Michael Mateas 267

bibliography 277

about the contributors 313

index 321

Contents

15

Algorithm
Andrew Goffey

Algorithm = Logic + Control1

The importance of the algorithm for software studies is indicated with admi-
rable succinctness by Les Goldschlager and Andrew Lister in their textbook,
Computer Science: A Modern Introduction. The algorithm “is the unifying concept
for all the activities which computer scientists engage in.” Provisionally a “de-
scription of the method by which a task is to be accomplished,” the algorithm
is thus the fundamental entity with which computer scientists operate.2 It is
independent of programming languages and independent of the machines that
execute the programs composed from these algorithms. An algorithm is an ab-
straction, having an autonomous existence independent of what computer sci-
entists like to refer to as “implementation details,” that is, its embodiment in a
particular programming language for a particular machine architecture (which
particularities are thus considered irrelevant).

But the algorithm is not simply the theoretical entity studied by computer
scientists. Algorithms have a real existence embodied in the class libraries of
programming languages, in the software used to render web pages in a browser
(indeed, in the code used to render a browser itself on a screen), in the sorting
of entries in a spreadsheet and so on. Specialized fi elds of research, such as artifi -
cial life or connectionism in cognitive science, utilize genetic algorithms, back-
propagation algorithms, least mean square algorithms for the construction of
models to simulate evolutionary processes or the learning capacities of neural
networks. Algorithms have material effects on end users—and not just when
a commercial website uses data- mining techniques to predict your shopping
preferences.

In short, both theoretically and practically, ideally and materially, algo-
rithms have a crucial role in software. But none of this tells us much about
the social, cultural, and political role algorithms play, if anything. Nor does
it tell us much about the strata of material reality algorithmic abstractions
might be correlated with: glowing confi gurations of pixels on a screen? mouse
movements? the fl ow of electrons around an integrated circuit? Locating itself
squarely on the side of the reductionist strategies of the exact sciences, society,
culture, and politics are very much marginal to the concerns of computing

Algorithm

16

science. Software engineering, on the other hand, concerned as it is with the
pragmatic effi cacy of building software for particular purposes, might appear
to offer a better starting point for factoring culture back into software. How-
ever, it is unlikely that software engineering will allow us to view culture as
anything other than something that software plugs into, as long as we fail to
arrive at a better understanding of some of its basic building blocks. The key
question then is what, if anything, a study of algorithms as such can tell us
about the place of culture in software.

Historically, the algorithm occupies the central position in computing sci-
ence because of the way that it encapsulates the basic logic behind the Turing
machine. Alan Turing’s concept of a machine that could be used to determine
whether any particular problem is susceptible to being solved mechanically was
a highly original interpretation of the aim of David Hilbert’s famous project of
formally deciding whether or not any mathematical proposition can be proved
true. The algorithm, which Turing understood as an effective process for solv-
ing a problem, is merely the set of instructions fed into the machine to solve
that problem.3 Without the algorithm then, there would be no computing.

Although computer scientists work with them as if they were purely formal
beings of reason (with a little bit of basic mathematical notation, it is possible
to reason about algorithms, their properties and so on, the way one can reason
about other mathematical entities), algorithms bear a crucial, if problematic, re-
lationship to material reality. This was tacit in the way that the Turing machine
was envisaged in terms of effective processes: A computer is a machine, after all,
and while the Turing machine is an imaginative abstraction, its connotations
of materiality are entirely real. Robert Rosen has suggested that the tempta-
tion to extrapolate from formal procedures to material processes was practically
inherent in the enterprise of the early computing scientists.4 Such a temptation
implies a confusion between the mathematics of algorithms and the physics of
real processes, of which Stephen Wolfram’s bold speculation that the universe is
itself a giant computer is one possible outcome.5 The rest of this article explores
another possibility, equally speculative but perhaps more mundane.

One of the implications of characterizing the algorithm as a sum of logic
and control is that it is suggestive of a link between algorithms and action.
Despite the formal- logical framework of the theory of algorithms and the fact
that programming languages are syntactic artifacts, the construction of al-
gorithms as a precisely controlled series of steps in the accomplishment of a
task is a clear indication of what might be called the pragmatic dimension of

Algorithm

17

programming. Algorithms do things, and their syntax embodies a command
structure to enable this to happen. After all, the Turing machine as an imagi-
native abstraction had as a material correlate a series of real computers. And
dumb though they may be, missile guidance systems, intelligence databases,
and biometric testing are all perfectly real. Without this effective existence
in concrete machinery, algorithms would only ever have a paper reality as the
artifacts of a formal language.

In the fi eld of linguistics, the existence of a pragmatic dimension to lan-
guage—the fact that words do things—has created enormous problems for
attempts to formalize the structure of natural language. Because pragmatics
connects language to extrinsic factors, it becomes impossible to conceptualize
a language as a self- suffi cient system closed in on itself. Perhaps attempting to
conceptualize the pragmatic dimension of the algorithm might yield a simi-
lar result? However, while formalization comes afterwards with natural lan-
guages, with algorithms, formalization comes fi rst, the express aim being to
divorce (formal) expression from (material) content completely. Understand-
ably then, the study of computation has tended to concentrate on issues of
syntax and semantics, the assumption being that what algorithms do can be
appropriately grasped within such a framework. This has tended to result in
making the leap from the theoretical world to the practical world a diffi cult
one to accomplish. Always the trivia of implementation details.

A conception of the algorithm as a statement as Michel Foucault used the
term might allow us to understand this approach a little better. For Foucault,
the statement is not analytically reducible to the syntactic or semantic features
of a language; it refers instead to its historical existence and the way that this
historical existence accomplishes particular actions. The statement is a sort
of diagonal line tracing out a function of the existence of language, which is
in excess of its syntactic and semantic properties. In this way, the concept of
the statement acts as a reminder that the categorical distinction between form
and content is, paradoxically, insuffi ciently abstract to grasp the intelligence
of concretely singular constellations of language in their effective existence.
As Foucault puts it in The Archaeology of Knowledge, “to speak is to do some-
thing—something other than to express what one thinks, to translate what
one knows, and something other than to play with the structure of language.”6
For Foucault, these actions are restricted to the human sphere, as is only to be
expected from an analysis which focuses on the historical existence of natural
languages. Appropriately translated into the fi eld of software studies, however,

Algorithm

18

focusing on the development and deployment of algorithms and an analysis of
the actions they accomplish both within software and externally might lead us
to view the latter as a sort of machinic discourse, which addresses the ways in
which algorithms operate transversally, on themselves, on machines, and on
humans. (Alternatively, we might want to start to think about cultural analy-
sis as a process of software engineering.)

Viewing algorithms in this way as statements within a machinic discourse
would problematize their existence in a way which undercuts the “pure / applied”
or “theory / practice” dichotomies which crop up when the distinction between
computing science and software engineering is too hastily made. The formalist
aim at complete abstraction from content not only relays the theory / practice
divide, it also tends to preclude an analysis of the link between the crucial enti-
ties of computing science and historical context. Just because the development
of an algorithm requires a level of de facto formal abstraction, which then al-
lows that algorithm to be applied to other kinds of content, does not mean that
we have exhausted everything that we need to know to understand the processes
of which it is a part. To borrow an expression from Gilles Deleuze and Félix
Guattari, whose analysis of the place of pragmatics in language is part of the
inspiration for this discussion, the problem with the purely formal conception
of the algorithm as an abstract machine is not that it is abstract. It is that it is
not abstract enough. That is to say, it is not capable of understanding the place
of the algorithm in a process which traverses machine and human.7

Algorithms obviously do not execute their actions in a void. It is diffi cult
to understand the way they work without the simultaneous existence of data
structures, which is also to say data. Even the simplest algorithm for sorting a
list of numbers supposes an unsorted list as input and a sorted list as output (as-
suming the algorithm is correct). Although computer scientists reason about
algorithms independendently of data structures, the one is pretty near useless
without the other. In other words, the distinction between the two is formal.
However, from a practical point of view, the prerequisite that structured data
actually exist in order for algorithms to be operable is quite fundamental, be-
cause it is indicative of a critical operation of translation that is required for a
problem to be tractable within software. That operation of translation might be
better understood as an incorporeal transformation, a transformation that, by
recoding things, actions, or processes as information, fundamentally changes
their status. This operation can be accomplished in myriad ways, but generally
requires a structuring of data, whether by something as innocuous as the use of

Algorithm

19

a form on a web page or by social processes of a more complex form: the knowl-
edge extraction practiced by the developers of expert systems, the restructur-
ing of an organization by management consultants, and so on.

It would be easy to leave the analysis of algorithms at this point: We are
back on familiar territory for cultural analysis, that of the critique of abstrac-
tion. Within cultural studies and many other fi elds of research in the human
sciences, abstraction is often thought of as the enemy. Many movements of
philosophical thought, literary and artistic endeavor, and human- scientifi c re-
search set themselves up against the perceived dehumanizing and destructive
consequences of the reductionism of mathematics, physics, and allied disci-
plines, as the perennial debates about the differences between the human and
the exact sciences suggests. We could even understand major elements of the
concept of culture as a response to the abstract machinery of industrial capital-
ism and the bifurcated nature modern rationality is built upon. Understand-
ing things, activities, tasks, and events in algorithmic terms appears only to
exacerbate this situation. What is an algorithm if not the conceptual embodi-
ment of instrumental rationality within real machines?

However, to simply negate abstraction by an appeal to some other value
supposedly able to mitigate the dehumanizing consequences of reductionism
misses a crucial point. It fails to adequately question the terms by which the
algorithm, as a putatively self- suffi cient theoretical construct, maintains its
hierarchizing power. In questioning the self- suffi ciency of the algorithm as a
formal notion by drawing attention to its pragmatic functioning, however, it
becomes possible to consider the way that algorithms work as part of a broader
set of processes. Algorithms act, but they do so as part of an ill- defi ned network
of actions upon actions, part of a complex of power- knowledge relations, in
which unintended consequences, like the side effects of a program’s behavior,
can become critically important.8 Certainly the formal quality of the algorithm
as a logically consistent construction bears with it an enormous power—par-
ticularly in a techno- scientifi c universe—but there is suffi cient equivocation
about the purely formal nature of this construct to allow us to understand that
there is more to the algorithm than logically consistent form.

Lessig has suggested that “code is law,” but if code is law it is law as a
“management of infractions.”9 Formal logics are inherently incomplete and
indiscernibles exist. Machines break down, programs are buggy, projects are
abandoned and systems hacked. And, as the philosopher Alfred North White-
head has shown, humans are literally infected by abstractions.10 This no bad

Algorithm

20

thing, because like the virus which produced variegated tulips of a rare beauty,
infection can be creative too.

Notes

1. Robert Kowalski, “Algorithm = logic + control.”

2. Les Goldschlager and Andrew Lister, Computer Science: A Modern Introduction, 2nd
ed., 12.

3. See Rolf Herken, ed., The Universal Turing Machine: A Half- Century Survey for an
excellent collection of appraisals of the Turing machine.

4. Robert Rosen, “Effective Processes and Natural Law” in Herken, ibid.

5. Stephen Wolfram, A New Kind of Science.

6. Replace the word “speak” with the word “program” and one might begin to get a sense
of what is being suggested here. See Michel Foucault, The Archaeology of Knowledge.

7. Gilles Deleuze and Félix Guattari, “November 20, 1923: Postulates of Linguistics,”
in A Thousand Plateaus.

8. See Philip Agre, Computation and Human Experience on the crucial role of side effects
in software. Max Weber’s essay The Protestant Ethic and the Spirit of Capitalism is the
classic text on the fundamental role of unintended consequences in human action.

9. Gilles Deleuze, Foucault, p. 39.

10. See for example, Alfred North Whitehead, Science and the Modern World, and the
extended commentary by Isabelle Stengers, Penser avec Whitehead.

Algorithm

